MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

نویسندگان

  • Brian Pratt
  • J. Jeffry Howbert
  • Natalie I. Tasman
  • Erik J. Nilsson
چکیده

SUMMARY MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. AVAILABILITY AND IMPLEMENTATION MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. CONTACT [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

See Spot Run: Using Spot Instances for MapReduce Workflows

MapReduce is a scalable and fault tolerant framework, patented by Google, for computing embarrassingly parallel reductions. Hadoop is an open-source implementation of Google MapReduce that is made available as a web service to cloud users by the Amazon Web Services (AWS) cloud computing infrastructure. Amazon Spot Instances (SIs) provide an inexpensive yet transient and market-based option to p...

متن کامل

Bringing Elastic MapReduce to Scientific Clouds

The MapReduce programming model, proposed by Google, offers a simple and efficient way to perform distributed computation over large data sets. The Apache Hadoop framework is a free and open-source implementation of MapReduce. To simplify the usage of Hadoop, Amazon Web Services provides Elastic MapReduce, a web service that enables users to submit MapReduce jobs. Elastic MapReduce takes care o...

متن کامل

Resilin: Elastic MapReduce for Private and Community Clouds

The MapReduce programming model, introduced by Google, offers a simple and efficient way of performing distributed computation over large data sets. Although Google’s implementation is proprietary, MapReduce can be leveraged by anyone using the free and open source Apache Hadoop framework. To simplify the usage of Hadoop in the cloud, Amazon Web Services offers Elastic MapReduce, a web service ...

متن کامل

Hadoop Based Data Intensive Computation on IaaS Cloud Platforms

............................................................................................................................. xi Chapter 1: Introduction ....................................................................................................... 1 1.1 Cloud Platforms ........................................................................................................ 2 1.1.1 Amazo...

متن کامل

Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming

The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2012